Search results for "scalar [resonance]"

showing 10 items of 45 documents

Fl�chen Beschr�nkter Mittlerer Kr�mmung in Einer Dreidimensionalen Riemannschen Mannigfaltigkeit

1973

In recent papers HILDEBRANDT [11] and HARTH [5] proved the existence of solutions of the problem of Plateau for surfaces of bounded mean curvature with fixed and free boundaries in E3 and for minimal surfaces with free boundaries in a Riemannian manifold, respectively. Here their methods will be combined to solve the problem of Plateau for surfaces of bounded mean curvature in a Riemannian manifold. This will be done for fixed and free boundaries. Moreover, isoperimetric inequalities for the solutions will be given.

Mean curvature flowMean curvatureMinimal surfaceGeneral MathematicsPrescribed scalar curvature problemMathematical analysisMathematics::Differential GeometryIsoperimetric dimensionRiemannian manifoldRicci curvatureMathematicsScalar curvatureManuscripta Mathematica
researchProduct

Mean curvature flow of graphs in warped products

2012

Let M be a complete Riemannian manifold which either is compact or has a pole, and let φ be a positive smooth function on M . In the warped product M ×φ R, we study the flow by the mean curvature of a locally Lipschitz continuous graph on M and prove that the flow exists for all time and that the evolving hypersurface is C∞ for t > 0 and is a graph for all t. Moreover, under certain conditions, the flow has a well defined limit.

Mean curvature flowPure mathematicsMean curvatureApplied MathematicsGeneral MathematicsMathematical analysisRiemannian manifoldLipschitz continuityCurvatureGraphHypersurfaceMathematics::Differential GeometryMathematicsScalar curvatureTransactions of the American Mathematical Society
researchProduct

Volume estimate for a cone with a submanifold as vertex

1992

We give some estimates for the volume of a cone with vertex a submanifold P of a Riemannian or Kaehler manifold M. The estimates are functions of bounds of the mean curvature of P and the sectional curvature of M. They are sharp on cones having a basis which is contained in a tubular hypersurface about P in a space form or in a complex space form.

Mean curvature flowPure mathematicsMean curvatureMathematics::Complex VariablesMathematical analysisSubmanifoldHypersurfaceVertex (curve)Mathematics::Differential GeometryGeometry and TopologySectional curvatureMathematics::Symplectic GeometryRicci curvatureMathematicsScalar curvatureJournal of Geometry
researchProduct

Curvature locus and principal configurations of submanifolds of Euclidean space

2017

We study relations between the properties of the curvature loci of a submanifold M in Euclidean space and the behaviour of the principal configurations of M, in particular the existence of umbilic and quasiumbilic fields. We pay special attention to the case of submanifolds with vanishing normal curvature. We also characterize local convexity in terms of the curvature locus position in the normal space.

Mean curvaturePrincipal curvatureGeneral MathematicsHyperbolic spaceMathematical analysisCurvature formCenter of curvatureMathematics::Differential GeometrySectional curvatureCurvatureMathematicsScalar curvatureRevista Matemática Iberoamericana
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry

2022

AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…

Multiplicity resultsGround state010102 general mathematicsMultiplicity (mathematics)Scalar curvature equation01 natural sciencesPhase plane analysiGround statesBubble tower solutions010101 applied mathematicsCombinatoricsSettore MAT/05 - Analisi MatematicaBubble tower solutionFowler transformationScalar curvature equation; Ground states; Fowler transformation; Invariant manifold; Bubble tower solutions; Phase plane analysis; Multiplicity resultsMultiplicity result0101 mathematicsNon-perturbativeInvariant manifoldGround stateAnalysisReciprocalPhase plane analysisScalar curvatureMathematicsJournal of Dynamics and Differential Equations
researchProduct

Normal Coulomb Frames in $${\mathbb{R}}^{4}$$

2012

Now we consider two-dimensional surfaces immersed in Euclidean spaces \({\mathbb{R}}^{n+2}\) of arbitrary dimension. The construction of normal Coulomb frames turns out to be more intricate and requires a profound analysis of nonlinear elliptic systems in two variables. The Euler–Lagrange equations of the functional of total torsion are identified as non-linear elliptic systems with quadratic growth in the gradient, and, more exactly, the nonlinearity in the gradient is of so-called curl-type, while the Euler–Lagrange equations appear in a div-curl-form. We discuss the interplay between curvatures of the normal bundles and torsion properties of normal Coulomb frames. It turns out that such …

Nonlinear systemConservation lawLorentz spaceNormal bundleMathematical analysisTorsion (algebra)CoulombHarmonic mapMathematical physicsMathematicsScalar curvature
researchProduct

Charmed hadrons in nuclear medium

2010

5th International Conference on Quarks and Nuclear Physics (QNP09).Inst High Energy Phys Chinese Acad Sci, Beijing, PEOPLES R CHINA, SEP 21-25, 2009

Nuclear and High Energy PhysicsParticle physicsMesondynamically-generated baryonic resonancesNuclear TheoryHadronScalar (mathematics)Nuclear TheoryFOS: Physical sciencesspectral functionCharmed and hidden charmed scalar resonances01 natural sciences7. Clean energyNuclear Theory (nucl-th)symbols.namesakePauli exclusion principleHigh Energy Physics - Phenomenology (hep-ph)charmed and hidden charmed scalar resonances0103 physical sciencesNuclear Experiment (nucl-ex)Open-charm mesons010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentPhysics010308 nuclear & particles physicsBlocking (radio)Dynamically-generated baryonic resonancesHigh Energy Physics::PhenomenologyFísicaAstronomy and AstrophysicsSpectral functionBaryonHigh Energy Physics - PhenomenologysymbolsHigh Energy Physics::ExperimentDense matterRESONANCESMATTERopen-charm mesons
researchProduct

Zero-field nuclear magnetic resonance spectroscopy of viscous liquids

2014

Abstract We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin–spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids.

Nuclear and High Energy PhysicsZero field NMRzero-field NMRBiophysicsAnalytical chemistryNMR spectroscopy; low field nmr; Density functional calculationsViscous liquidBiochemistrychemistry.chemical_compoundViscosityMolecular dynamicsNMR spectroscopyMoleculePhysics::Chemical Physicsdensity functional theoryCoupling constantlow field nmrtechnology industry and agricultureZero-field NMRNuclear magnetic resonance spectroscopyviscous liquidsCondensed Matter PhysicsScalar couplingDensity functional calculationschemistryChemical physicsDensity functional theoryscalar couplingEthylene glycolViscous liquidsJournal of Magnetic Resonance
researchProduct

Dynamical Aspects of Generalized Palatini Theories of Gravity

2009

We study the field equations of modified theories of gravity in which the Lagrangian is a general function of the Ricci scalar and Ricci-squared terms in Palatini formalism. We show that the independent connection can be expressed as the Levi-Civitagrave connection of an auxiliary metric which, in particular cases of interest, is related with the physical metric by means of a disformal transformation. This relation between physical and auxiliary metric boils down to a conformal transformation in the case of f(R) theories. We also show with explicit models that the inclusion of Ricci-squared terms in the action can impose upper bounds on the accessible values of pressure and density, which m…

PhysicsNuclear and High Energy PhysicsBlack hole formationFOS: Physical sciencesConformal mapGeneral Relativity and Quantum Cosmology (gr-qc)CosmologyGeneral Relativity and Quantum CosmologyGravitationsymbols.namesakeGeneral Relativity and Quantum CosmologyClassical mechanicssymbolsf(R) gravityPhenomenology (particle physics)LagrangianMathematical physicsScalar curvature
researchProduct